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Biased random satisfiability problems: From easy to hard instances
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In this paper we study biased randdfrsatisfiability (K-SAT) problems in which each logical variable is
negated with probabilityp. This generalization provides us a crossover from easy to hard problems and would
help us in a better understanding of the typical complexity of ranBe8AT problems. The exact solution of
1-SAT case is given. The critical point &f-SAT problems and results of replica method are derived in the
replica symmetry framework. It is found that in this approximatigr: p~&= for p— 0. Solving numerically
the survey propagation equations fr3 we find that forp < p* ~0.17 there is no replica symmetry breaking
and still the SAT-UNSAT transition is discontinuous.

DOI: 10.1103/PhysRevE.71.066101 PACS nuni®)er02.50-r, 89.75-k, 64.60.Cn, 75.10.Nr

I. INTRODUCTION negated variable. It is an easy problem and solved in a poly-

o ) o nomial time. However, notice that as longtass small fluc-
Optimization problems are subject of recent studies in thgations play an important role in our problem and this could

context of complex system(d—4]. RandomK-satisfiability  give rise to significantly different behaviors for the problem.
(K-SAT) problems are well known examples of these prob-Tnere is also another problem callégl+p)-SAT[3] which
lems which have their origin in computer science and COMyy tuning p goes from a 2SATto a 3-SAT problem. It is
plexity theory[5-11]. Finding the configuration dfl logical  ¢jose to what we like to do in this paper but here we are able

variables which satisfies a formula & clauses is a hard 4 study the easy-hard crossover for gend¢aand it is a
problem and indeed lies in the class P-complete prob-  ,5re general problem to this end.
lems fork=3[12]. _ _ _ In the following we first give the exact solution of 1-SAT
From a physical point of view the interesting feature of ,roplem by a statistical mechanics approach. We find the
randomK-SAT problems is the presence of phase transitiongerage number of unsatisfied clauses and the average num-
in the thermodynamic limit wherd andM approach infinity  per of solutions in the ground state of the system and explain
and :=M/N remains finite[2]. Here the transition is be- e origin of their behaviors. Utilizing the cavity method and
tween SAT and UNSAT phases where a typical instance ofsgming the replica symmetry, we derive a relation for the
the formula is satisfied or unsatisfied respectively with probitical point of K-SAT problems. It is found that in general
ability 1. It is around the phase transition that the timeacocp—m—l) asp— 0. Next we obtain the free energy and the
needed to find the solution of a typical instance grows expogistribution of effective fields with the aid of replica method

nentially with the size of the problem. , and in the replica symmetry approximation. Finally we resort
In this paper we study a generalized version of the rant, the numerical solution of survey propagation equations
domK-SAT problems where each logical variable is negateq ] for the case 0k =3 and compare the extracted critical
with probability p rather than 1/2 as in the original random points with the predictions of replica symmetry assumption.
K-SAT. The aim of this generalization is to go continuously |1 is found that forp>p" ~0.17 the replica symmetry breaks

from easy instances of the problem to hard ones. Clearly fog; some pointay < a, whereas fop<p* we are always in
p=0 we have an easy randdfSAT for all values ofK. On 44 easy-SAT phasé < ag.

the other hand as the studies indicate, the problem is hard for e paper is organized as follows: In the next section we

p=1/2 andK=3. Thus one expects a crossover from easy tQyefine the problem. Section 11l is devoted to the study of the
hard.reglon by increasing from zero. Is it possible to define 1 _gaT problem. Assuming the presence of replica symmetry
a point beyond which one can say that the problem becomege give the results of cavity and replica methods in Secs. IV
hard? How the problem approaches the hard regime? Wha,q v/ Survey propagation equations for the cKse3 are

are the universal features of this crossover? These are Sofigmerically studied in Sec. VI. Section VII includes the con-
questions which can provide us a deeper understanding @ ;sion remarks of the paper.

the typical complexity of randoriK-SAT problems.
A similar problem to one that we are going to study is the
Horn SAT problem(13] where all the clauses have only one Il. THE PROBLEM DEFINITION

We takeN logical variablegx;|i=1, ... N} wherex;=1 if
the corresponding variable is true and otherwise0. Alter-

*Electronic address: ramezanpour@iasbs.ac.ir natively we can speak dfl Ising variablesS:=2x,—1. On
"Electronic address: samanimi@sharif.edu the other side we have a formula which consistMoflauses
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FIG. 1. Factor graph of the formula given in
Eq. ().

which have been joined to each other by logissb. Each lizing the above facts and summing over spin configurations

clause in turn containK logical variable selected randomly the partition function reads

from the list of ourN variables. These variables, which join ~ e

to each other by logicabr, are negated with probabilitg. Z[C]= 2 e PHsC= H (ePi+e M), (4)

One obtains the original randoK+SAT problem by choos- s !

ing p=1/2. Here there is an example of a 2-SAT formula where B=1/kgT. The free energy per variable,

with 4 clauses and 10 logical variables -(1/BN)In(Z[C]), still depends on the structure of the factor
— o — — raph and we should take an average over this kind of dis-

F = (X5 OX7) O(X2 OXg) O(Xy OXg) O(Xe OX19). (1) cg)rdgr. g

A very useful concept in these problems is the factor graph, The probability to have the sét;,f;} is given by

a bipartite graph of variable nodes and function nodes. In (1-p)
Fig. 1 we have shown the factor graph of formula given P[{t,f}]= (MUNM] (T) (5)
above. In this figure the logical variables and the clauses i (t!fi!)

have been represented by the cirdleariable nodesand the . C g
squaresfunction nodesrespectively. An edge in this graph 'I;ahedns the averaged free energy in the thermodynamic limit
only connects a variable node to a function node and its style

gives the nature of the logical variable in the associated _ ”
In2)+e™ X In(da)l(e)

n,m=-o

clause. Here dashed edges are used to indicate that the ne- fe= f[C] al2 - (11B)
gated variable enters the clause. We can summarize the fac-

tor graph in matrixCy .\ With elementC,; € {0, +1,-1. In

fact C,; is +1 or -1 if clausea contains variablé or its XIn{costi B(m+n)/2]} |, (6)
negated respectively. Otherwi€g ;=

where we have definegk=1-2p. MoreoverJ,(«) andl, («)
Ill. THE SIMPLE CASE OF K=1 are the Bessel functions of first kind. Now from E§) one

can easily find the average energy per variable
We start by giving the exact behavior of 1-SAT problem o= (BN = al2
by keeping a statistical mechanics approg@Hi0]. We de- - -«
fine the energy of a formula as the number of violated
clauses, that is e 2 J(ga)l (@) (m+n)/2 tanf B(m+ n)/2].

m,n=-x

M N
E[SC] ==2[1—E ca,is} / 2, ) (@)
i=1

a=1 In the same way the entropy per variable is given by
where S denotes the configuration of Ising variables. Note s o
that by definition s:=(9/N=In(2) +e* >, I (qa)l(a)(In{cosiB(m
M m,n=—x
> Cai=ti—fi, ) +n)/2]} - [B(m+ n)/2]tant B(m+ n)/2]). (8)
a=1

We are interested in the ground state properties of the prob-
wheret; andf; give the number of full lines and dashed lines, lem and to this end we need to take the lifitsce in the
respectively, emanating from variable nodeThe set of above relations. After some simplifications we find for the
{t;,f;} only depends on the structure of the factor graph. Uti-ground state energy
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FIG. 2. Ground state energy of the 1-SAT problem from top to  FIG. 4. S, experiences a cavity field determined from the fields

bottom forp=1/2,p=1/4, andp=1/6. experienced by the other neighbors of function nodes 1,2,3.
6= (1 _ p)a s Z (m+ n)Jm(qa)In(a). (9) IV. CAVITY METHOD
m+n>0

In this section we apply the cavity meth¢dl] to our
. ) . ) problem. For simplicity we work only in the replica symmet-
In Fig. 2 we have shown the behavior of this quantity versug;. scheme and zero temperature.
a and for some values op. As expected the problem is  consjder the variable nod® with z=3 neighbors in Fig.

always in the UNSAT phase where an infinite number ofy ¢ is known that the cavity field experienced by variaSje
clauses are not satisfied in the thermodynamic limit. Indeegk

the probability that a new clause is not satisfied is given by

2p(1-p)a and this quantity has always a nonzero value as z

long asp and a are nonzero. ho= 2 u(h?, ... h&), (1)
The entropy of system at zero temperature is found from a1
Eq. (8) where
R K-1
S =€ lo(aV1-)In(2). (10 Uthy, ... bk = Col T 6(- Cihy). (12)

r=1

We have numerically computed this quantity and have shown
its beh\;violi witrlm ir?Fig. gu 'S quantity v WHereé’(x) is the known step function which is 1 far>0 and

Clearly the number of solutions is the same for different® Othérwise. Note thatl and h are stochastic quantities. In
values ofp and smalla. It is due to the fact that for smadt the replica symmetric framework the probability distribution

each clause constrain a variable regardless of the nature 8f these quantities are given py1]

variable in that clause. However for largethe situation is U) = cad(U) +C.S(u+ 1) +cuslu—1
different. In fact when a variable contributes in different QlU) = Codlu) +c-& s )
forms in a number of clauses, with a larger probability it can -1 -
take the values 0,1 without changing the number of violated _ _ _
clauses. This is the reason for the smaller entropy of smaller P(h)= |:E_w P- (W&l =h) +Podlh) + z P.(all =h).
values ofp in Fig. 3.
p in Fig (13
074 Then it is an easy exercise to show that ffiee 0 the prob-
051 ability distribution ofh is
o [(z-h)/2]
057 z 2r+h
P.( =2 fe@ X ( )( )cZ‘Zf‘“c'_c“:“.
044 =~ =0 \2r+h r °
0.3 (14)
029 Here[...] denotes the integer part of enclosed quantity and
o1l fx.(2) is the degree distribution of variable nodes
! 1 ; p y ] fra(2) = (Z*¥z)e e, (15)

MY Similarly for h=<0, P_(-h) is obtained by interchanging the

FIG. 3. Ground state entropy of the 1-SAT problem from top torole of c_ and c, in the above equation. Simplifying the
bottom forp=1/2,p=1/4, andp=1/6. above relations one finds that
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FIG. 5. a. versusp for K=3 and in the replica
symmetric approximation. The line shows a
power law of exponent 2.

0.01

Po = e Kell=%)| (2K arvc_c,), (16)

and after some straightforward algebra fer==/_,P,(h)
one obtains

[’

P, + Py = eKec f dtellg(2VKac,t).  (17)

Kac_

Equationg16) and(17) are two independent relations which
along with the normalization conditioR_+Py+P,=1 deter-
mine P(h) and Q(u). However we still need to derive the
relations betweercy,c_,c,} and {Py,P_,P,}. To this end
note that from Eq(12) one has

Co=1-[pP:+(1-pP*":=1-c,
C.=pc, C,=(1-p)c,.

Summing the above relations one can use Etf.and(17)
to find the following equation focy:

cp=[a(c) ¢,

(18)

(19
where
g(Cp) :==1-p-(1-p)Py—(1-2p)P,. (20)

For p=1/2 werecover the known relation for the effective
field distribution

P(h) = el (Kac,), (21)
where nowc, satisfies
1 -e*e%ly(Kagy) |
cp:{ 20( 4 p)} . (22)

Returning to our general problem we find from EgQ) that
g(0)=0 and

dg(cy)

ac, =2Kap(1l-p).

CpZO

(23)

Thus as expected E@l9) suggests a continuous transition
for K=2 and discontinuous transitions f&r=3. Indeed for
K=2 the critical value ofx is given by

1
K=" .
¢ 4p(1-p)

Due to the absence of replica symmetry breaking the above
results are exact fd=2. As expected fop=1/2 we get the
known value ofa.=1 anda,— > for p—0, 1.

What can be said about, for generalK? Let us focus on
the behavior ofa, as p— 0. First note that just above the
critical point P, takes a finite value and from the definition
of ¢,, Eq. (18), one obtaing,p“~*. On the other hand in
g(cy), ¢, always appears along with as ac,. Expanding
g(cp) one finds that only for a finitec, the two sides of Eq.
(19 would have the same scaling wifh This in turn sug-
gests that the critical value af should scale ap~ .

In Fig. 5 we have solved Eq19) numerically forK=3.
Indeed forK=3 the replica symmetric predictions provide
an upper bound for, [16]. For K=3 we found that as ex-
pecteda, approaches to infinity likg=2 asp— 0.

(24)

V. REPLICA APPROACH

In the following we will keep the same lines as RE0]
to calculate the free energy of biased rand§p$SAT prob-
lems in the replica formalism. As before we can write energy
or the number of violated clauses as

M

N
E[SC]=2 5(2 CiiS + K) :
=1 i=1

(25)

Our goal is to findn(Z[C]) and to this end we need to obtain

Z[C]'= E e—,822=1E[Sa,C].
ISl

Zn : (26)

The overline denotes averaging with respect to the random
structure of the factor graph. Due to the independent nature
of clauses one can write

Z,=

> M, (27)
1.9

S

where
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g = e_ﬁEa‘s(ZiCI,iSia+K)_ (28)

Then for a single clause we can use the fact that

K
(2 csk)=Ilas+c), (29
i j=

to write the following expression fof

N

pe(1 -k > e A1 +C))

i k=1

X(1+O(LN) + ---), (30)

where 1[C] is the number of minus elements in the set

{Gjli=1,... K}. Let us also define

N
X(3) = (LIN) X, 8(S - ), (31)
i=1

wheredg and§ are vectors ofi Ising elements in the replica
space. Then apart from some irrelevant terms and constants

we obtain
(= X ptha-prtd
Cy,...Cx=%1
XE X( C]_O'l) X(_ éKO'K)e_BEaH}'(Zla(UJ'a_l) (32)
‘Tl ‘TK
and thus
Z,~ 3 N, F(x) = — a IN[WO)T+ 3 X(@)IN[X(&)],
X(&) o
(33
wherea:=M/N and
W(x) = 2 pY(1-pK” X HX(oJ
YK 1,0k )71
K
K a
X [T x(= gperallizdoi-D, (34)

j=r+l

In this equatior>,;x means a sum over all the selectionsvof

PHYSICAL REVIEW E 71, 066101(2009

K K
W(x) = > B(r,K;p) | [TdmPmp)lTA,x-.(m),
=0 =1 a
(36)
whereB(v,K; p) is the binomial distribution
K v K-v
BvKip={ P (1-p"™, (37
and
AV,K—v(m)
K
- H(“”‘" ) 11 (ﬂ&) AT S )
o3 08 171 j=rt1 2
(38)
Doing the sum over one obtains
1 +m; « 1-m
Aurtm =11 (25 11 (257,
j=1 2 j=v+l 2
(39
If we optimizeNf(x) with respect tax(a) we find that
X(6) = AW W) (40)
where
W (x) := (41

X(a)

andA is determined from the normalization condition. After
some calculations one finds the following relation ¥t(x)

K K
W= BwK:p | [Tdm P(mj)[vH A1 (m)
v=0 =1 a
+ (K-l AV,K_H(m)] , (42)

whereIl, denotes a product over the indicasfor them
o?=+1. Moreover in this equation

K
Avaem) = 1+(€% - 1)H(1”")H( )

j=1

variables fromK ones and in the same time it orders these

selected variables in the beginning oKamember list.

Now we should find a form fo(a) which minimizes
f(x). As in previous studiegl0] we use the following ansatz

in the replica symmetric scheme

1+ moﬁ>. (35

x(&):J de(m)H(

Note that forp+# 1/2 we do not have the symmetry relation

x(—o)=x(o) and soP(m) is not an even function.
Applying the above ansatz we find

_ " 1+m )\ (1-m
A kora(m =1+P-D]] Tl I {—).
j=1 j

(43

We are interested to limit— 0 wherex(a) can be written as
X(0) = f dmP(m)e" In(@+my/(1-m) (44)

Now doing the standard algebfa0] we find the following
self consistency relation fd?(m)

066101-5
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o0 K

2 i = —aK+aW' (i .
P(m) = — ~ duei N+ (1-m) g-ak+aW' (u) f=a(l _K)E B(»,K;p) | D,k_, min(1,z, ... 2,
(45) K
where = Zpts T Z) F (01/2)20 B(»,K;p)
K-1 K-1 .
ww=BwK:p | 11 dmyP(m;)[ ve" IN(A,—1 K-, (M) X vf D,1k—pMin(1,zy, ... ,Z0,— 2, ..., = Zc-1)
v=0 =1
+ (K - V)e_u ln(AV’K_V_l(m))]- (46) + (K - V) f DV,K-V—]. min(l,Zl, e ,Zv,_ Zv+1, cen ,_ZK_]_)
Similarly for the free energy we find 0 o
K +%{J dsz)z—f dsz)z] (51
—0 0
Bf==1In(2) - a(1-K) X B(»,K;p)
=0 Considering the simple case Kf=1 the effective field dis-
K tribution reads
x| ITdmP(mpin(A, «-,) ) )
=1
K K-1 R = (Io(qa)lm(a) + 2 (- )"o(qe)
m=—o% =1
~ (@22 B(v.K;p) | II dmp(m) "
v=0 j=1
X[V |n(Ay—1'K—V + (K _ V)|n(A,,,|<_,,_1)] X['Zn—m(a’) + |2n+m(a’)]> 5(2_ m)! (52)
+2 f dmRAm)In(1 - m?). (47)  which for p=1/2 returns
Equations(47) and (45 return the known relations fop R(z) = e - | S(z— 53
=1/2 [10] when P(m) is an even function. Finally let us @=e nzz_m n(@dz=n). (53

consider the limit3— « of Egs.(45) and (47). To this end

we should work with effective fieldsz given by m  Compare the above relation with E1) which gives the

=tanhBz/2) [9]. Then for B=c we get effective field distribution in the cavity method and in the
replica symmetric approximation. In fact the two distribu-

” . ” tions are the same as they should be as long as we use an
— a—aK siuzpaW' (iu)
R@2)=e f_w due™e : (48) ansatz in which the effective fields take integer values.
Now the relation that give®V' (u) reads VI. SURVEY PROPAGATION EQUATIONS

% 0 K-1 In this section we study the behavior of 3-SAT problem
W(u)=K-K IOJ dzR2) +(1- p)f dzR2) by means of numerical solution of survey propagation equa-
0 - tions [14,15. Let us first write the general form of these
K-1 equations. We defing,_,; as the probability that in a state
+ B(v,K;p)[vf D,q g, € Y M2 2,2 Z-1) selected randomly from the existing states of the problem,
=0 ' the clausea sends a warning to variableto take the value
that satisfies it. This warning is sent if the other members of
+(K-v) f D, k-p-1€" m‘”(l*zl’---Zvv‘zwl’---"zk—ﬂ}, (49)  a do not satisfy this clause. We denote Wa) the set of
neighbors ofa. Then assuming a tree structure for the factor
graph we have

where
o1 o K-1 7= 11 PY)), (54)
D,1xi= | 1ldzR@z) | 11 dzR@), jeva@i
0 ]:1 —% j=p
where the product is over all the neighborsaoéxcludingi
. o K-1 alnd Pg(j)Listthe grob?bigs;s ;[h)a:hvariatblej]ac dloes no;hsa;tisfy_
— D+, D+, clausea. Let us denote by/;(j) the set of clauses that vari-
Dot 0 jI:[ldz‘R(ZJ) _wjgldz'R(Z’)' (50) ablej appears in them as it appears in claas€ig. 6. The
remaining set of clauses are denoted \iyj). With these
For the free energy in this limit we have definitions P(j) is given by[15]
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u
v
a

FIG. 6. The survey warningy,_,; is determined by the set of
SUrVeyS?]b*}j.

PY(j) = ——ba (55)
‘ His—>a+ H?—>a+ Hlp—ﬂ’
where
H}‘jﬂa: |:l_ H (1_77b~>J):| H (1_77b~>j)1
beVy(i) beV3()
Hjs—>a= |:1_ H (1_77b—>J):| H (1_77b—>])!
beVs(j) beVy(i)
m .= II @-mp. (56)
beV(j)la

Now starting from an arbitrary configuration for the warn-

PHYSICAL REVIEW E 71, 066101(2009

3, the complexity of our problems. The complexity of a
formula is the logarithm of the number of states and reads
[15]

M N
5=23,-2 (z-13;, (57)
a=1 i=1
where
3= lOQ[ H (Hjsﬂa"' Hjoﬁa + H}jﬂa - H H]-L;a] )
jeV(a) jeV(@@
3= loglIT; + 117 + 1171, (58)
and
I = [1 -1 a- naﬂi)] T -7,
aeV_(i) aeV,()
Hr: |:1 - H (1 - 7]a~>i):| H (1 - ﬂaai)’
aeV,(i) aeV_(i)
=TI @-na). (59)

ae V(i)

In these equation¥(i) denotes the set af, neighbors of
variable node, V.(i) is the set of function nodes (i) that
have been connected tdoy a full line andV_(i) gives the
complementary subset.

It is known that3, is zero in the replica symmetric and
UNSAT phases and nonzero in the hard-SAT pHds&g. In-
creasinga one first encounters the replica symmetry break-
ing point atay whereX, takes discontinuously its maximum
value. . After this stagel, decreases and finally vanishes at
the critical pointa.. One can use these properties »fto
computeay and a.

To solve the survey propagation equations we used the

ings sent along the edges of the factor graph one obtains tteaftware given if17]. In Fig. 7 we have shown the results

new values ofy’s from Egs.(54)—(56) and repeat this pro-

of this computation fory, and oy and compared, with the

cedure until reaches to a stationary state. It is believed that ipredictions of replica symmetric case. As the figure shows
the whole region of SAT phase the above equations result ithe behavior ofa, with p is qualitatively similar to the one

the correct solutions of randoi-SAT problems[14]. Here

obtained with the replica symmetry assumption. The repre-

we apply the same procedure to 3-SAT problem to computsented data have been restricted to relatively large values of

12 I T I I

FIG. 7. From top to bottom: the replica sym-
metry predictions for, (RS), survey propagation
predictions ofa; (SP and agq (SP for K=3 and
N=10 000. The numerical results have been ob-
tained for one realization with the convergence
limit equal to 0.001.

a, (RS) ——
11 Qc (SP) ——
o (SP) ——
10 .
9
8
7
6
5
4
3 | 1 | | |
0.2 0.25 0.3 0.35 0.4 0.45
p
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FIG. 8. Maximum complexity of the 3-SAT in terms of The
parameters are the same as Fig. 7.

p. It is due to the fact that for smaller values pthe com-
plexity vanishes and we are not able to identifyby look-
ing atX.

In Fig. 8 we also showed the behavior Bf, versusp. It
is seen that aroung*=0.17 the maximum complexity van-

ishes discontinuously. Then it can be concluded thatpfor
<p" we have a simple problem as in the regime of easy-SAT

phase.

VIl. CONCLUSION

In summery we studied biased randdrnSAT problems
in which a variable is negated with probabilipy This defi-

PHYSICAL REVIEW E71, 066101(2005

nition enables us to go continuously from easy random
K-SAT problems to the hard ones. Certainly this can help us
in a better understanding of the typical complexity of random
K-SAT problems. In this paper we gave the exact solution of
1-SAT case and the full picture of genei&SAT problems

in the replica symmetry approximation. From these results,
which are exact foK=2, one can obtain an upper bound for
the critical value ofay(p,K). We found thata(p,K) has a
power law behaviop™ for p— 0 wherery=K-1. We stud-

ied 3-SAT problems with the help of numerical solution of
the survey propagation equations and found no replica sym-
metry breaking transition fop<p" ~0.17. However in con-
trast to the tricritical point of 2p¢-SAT problem we found
that in both sides op* the SAT-UNSAT transition is discon-
tinuous. This phenomenon does not support the current belief
that hardness of a problem may stem from the discontinuous
nature of its transition. Certainly it still demands more stud-
ies to have a clear picture of the origins of typical complexity
in these problems.
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