
Biased random satisfiability problems: From easy to hard instances

A. Ramezanpour*
Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159, Iran

S. Moghimi-Araghi†

Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran
sReceived 17 November 2004; published 1 June 2005d

In this paper we study biased randomK-satisfiability sK-SATd problems in which each logical variable is
negated with probabilityp. This generalization provides us a crossover from easy to hard problems and would
help us in a better understanding of the typical complexity of randomK-SAT problems. The exact solution of
1-SAT case is given. The critical point ofK-SAT problems and results of replica method are derived in the
replica symmetry framework. It is found that in this approximationac~p−sK−1d for p→0. Solving numerically
the survey propagation equations forK=3 we find that forp,p* ,0.17 there is no replica symmetry breaking
and still the SAT-UNSAT transition is discontinuous.
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I. INTRODUCTION

Optimization problems are subject of recent studies in the
context of complex systemsf1–4g. RandomK-satisfiability
sK-SATd problems are well known examples of these prob-
lems which have their origin in computer science and com-
plexity theoryf5–11g. Finding the configuration ofN logical
variables which satisfies a formula ofM clauses is a hard
problem and indeed lies in the class ofNP-complete prob-
lems forKù3 f12g.

From a physical point of view the interesting feature of
randomK-SAT problems is the presence of phase transitions
in the thermodynamic limit whereN andM approach infinity
and aªM /N remains finitef2g. Here the transition is be-
tween SAT and UNSAT phases where a typical instance of
the formula is satisfied or unsatisfied respectively with prob-
ability 1. It is around the phase transition that the time
needed to find the solution of a typical instance grows expo-
nentially with the size of the problemN.

In this paper we study a generalized version of the ran-
domK-SAT problems where each logical variable is negated
with probability p rather than 1/2 as in the original random
K-SAT. The aim of this generalization is to go continuously
from easy instances of the problem to hard ones. Clearly for
p=0 we have an easy randomK-SAT for all values ofK. On
the other hand as the studies indicate, the problem is hard for
p=1/2 andKù3. Thus one expects a crossover from easy to
hard region by increasingp from zero. Is it possible to define
a point beyond which one can say that the problem becomes
hard? How the problem approaches the hard regime? What
are the universal features of this crossover? These are some
questions which can provide us a deeper understanding of
the typical complexity of randomK-SAT problems.

A similar problem to one that we are going to study is the
Horn SAT problemf13g where all the clauses have only one

negated variable. It is an easy problem and solved in a poly-
nomial time. However, notice that as long asK is small fluc-
tuations play an important role in our problem and this could
give rise to significantly different behaviors for the problem.
There is also another problem calleds2+pd-SAT f3g which
by tuning p goes from a 2-SAT to a 3-SAT problem. It is
close to what we like to do in this paper but here we are able
to study the easy-hard crossover for generalK and it is a
more general problem to this end.

In the following we first give the exact solution of 1-SAT
problem by a statistical mechanics approach. We find the
average number of unsatisfied clauses and the average num-
ber of solutions in the ground state of the system and explain
the origin of their behaviors. Utilizing the cavity method and
assuming the replica symmetry, we derive a relation for the
critical point of K-SAT problems. It is found that in general
ac~p−sK−1d asp→0. Next we obtain the free energy and the
distribution of effective fields with the aid of replica method
and in the replica symmetry approximation. Finally we resort
to the numerical solution of survey propagation equations
f15g for the case ofK=3 and compare the extracted critical
points with the predictions of replica symmetry assumption.
It is found that forp.p* ,0.17 the replica symmetry breaks
at some pointad,ac whereas forp,p* we are always in
the easy-SAT phase ifa,ac.

The paper is organized as follows: In the next section we
define the problem. Section III is devoted to the study of the
1-SAT problem. Assuming the presence of replica symmetry
we give the results of cavity and replica methods in Secs. IV
and V. Survey propagation equations for the caseK=3 are
numerically studied in Sec. VI. Section VII includes the con-
clusion remarks of the paper.

II. THE PROBLEM DEFINITION

We takeN logical variableshxi u i =1, . . . ,Nj wherexi =1 if
the corresponding variable is true and otherwisexi =0. Alter-
natively we can speak ofN Ising variablesSiª2xi −1. On
the other side we have a formula which consists ofM clauses
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which have been joined to each other by logicalAND. Each
clause in turn containsK logical variable selected randomly
from the list of ourN variables. These variables, which join
to each other by logicalOR, are negated with probabilityp.
One obtains the original randomK-SAT problem by choos-
ing p=1/2. Here there is an example of a 2-SAT formula
with 4 clauses and 10 logical variables

F ª sx5 ∨ x̄7d ∧ sx̄2 ∨ x9d ∧ sx1 ∨ x4d ∧ sx6 ∨ x̄10d. s1d

A very useful concept in these problems is the factor graph,
a bipartite graph of variable nodes and function nodes. In
Fig. 1 we have shown the factor graph of formula given
above. In this figure the logical variables and the clauses
have been represented by the circlessvariable nodesd and the
squaressfunction nodesd respectively. An edge in this graph
only connects a variable node to a function node and its style
gives the nature of the logical variable in the associated
clause. Here dashed edges are used to indicate that the ne-
gated variable enters the clause. We can summarize the fac-
tor graph in matrixCM3N with elementsCa,i P h0, +1,−1j. In
fact Ca,i is +1 or −1 if clausea contains variablei or its
negated respectively. OtherwiseCa,i =0.

III. THE SIMPLE CASE OF K=1

We start by giving the exact behavior of 1-SAT problem
by keeping a statistical mechanics approachf9,10g. We de-
fine the energy of a formula as the number of violated
clauses, that is

EfS,Cg ª o
a=1

M F1 − o
i=1

N

Ca,iSiGY 2, s2d

where S denotes the configuration of Ising variables. Note
that by definition

o
a=1

M

Ca,i = ti − f i , s3d

whereti and f i give the number of full lines and dashed lines,
respectively, emanating from variable nodei. The set of
hti , f ij only depends on the structure of the factor graph. Uti-

lizing the above facts and summing over spin configurations
the partition function reads

ZfCg ª o
S

e−bEfS,Cg = p
i

se−bti + e−bf id, s4d

where b=1/kBT. The free energy per variable,
−s1/bNdlnsZfCgd, still depends on the structure of the factor
graph and we should take an average over this kind of dis-
order.

The probability to have the sethti , f ij is given by

Pfht, fjg = sM!/NMdp
i
Spfis1 − pdti

sti! f i!d
D . s5d

Then the averaged free energy in the thermodynamic limit
reads

f ª ffCg = a/2 − s1/bdSlns2d + e−a o
n,m=−`

`

JmsqadInsad

3lnhcoshfbsm+ nd/2gjD , s6d

where we have definedqª1−2p. MoreoverJmsad andInsad
are the Bessel functions of first kind. Now from Eq.s6d one
can easily find the average energy per variable

eª kEl/N = a/2

− e−a o
m,n=−`

`

JmsqadInsadsm+ nd/2 tanhfbsm+ nd/2g.

s7d

In the same way the entropy per variable is given by

sª kSl/N = lns2d + e−a o
m,n=−`

`

JmsqadInsad„lnhcoshfbsm

+ nd/2gj − fbsm+ nd/2gtanhfbsm+ nd/2g…. s8d

We are interested in the ground state properties of the prob-
lem and to this end we need to take the limitb→` in the
above relations. After some simplifications we find for the
ground state energy

FIG. 1. Factor graph of the formula given in
Eq. s1d.
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eG = s1 − pda − e−a o
m+n.0

sm+ ndJmsqadInsad. s9d

In Fig. 2 we have shown the behavior of this quantity versus
a and for some values ofp. As expected the problem is
always in the UNSAT phase where an infinite number of
clauses are not satisfied in the thermodynamic limit. Indeed
the probability that a new clause is not satisfied is given by
2ps1−pda and this quantity has always a nonzero value as
long asp anda are nonzero.

The entropy of system at zero temperature is found from
Eq. s8d

sG = e−aI0saÎ1 − q2dlns2d. s10d

We have numerically computed this quantity and have shown
its behavior witha in Fig. 3.

Clearly the number of solutions is the same for different
values ofp and smalla. It is due to the fact that for smalla
each clause constrain a variable regardless of the nature of
variable in that clause. However for largea the situation is
different. In fact when a variable contributes in different
forms in a number of clauses, with a larger probability it can
take the values 0,1 without changing the number of violated
clauses. This is the reason for the smaller entropy of smaller
values ofp in Fig. 3.

IV. CAVITY METHOD

In this section we apply the cavity methodf11g to our
problem. For simplicity we work only in the replica symmet-
ric scheme and zero temperature.

Consider the variable nodeS0 with z=3 neighbors in Fig.
4. It is known that the cavity field experienced by variableS0
is

h0 = o
a=1

z

ush1
sad, . . . ,hK−1

sad d, s11d

where

ush1, . . . ,hK−1d = C0p
r=1

K−1

us− Crhrd. s12d

Hereusxd is the known step function which is 1 forx.0 and
0 otherwise. Note thatu and h are stochastic quantities. In
the replica symmetric framework the probability distribution
of these quantities are given byf11g

Qsud = c0dsud + c−dsu + 1d + c+dsu − 1d,

Pshd = o
l=−`

−1

P−shddsl − hd + P0dshd + o
l=1

`

P+shddsl − hd.

s13d

Then it is an easy exercise to show that forhù0 the prob-
ability distribution ofh is

P+shd = o
z=h

`

fKaszd o
r=0

fsz−hd/2g S z

2r + h
DS2r + h

r
Dc0

z−2r−hc−
r c+

r+h.

s14d

Here f…g denotes the integer part of enclosed quantity and
fKaszd is the degree distribution of variable nodes

fKaszd = szKa/z!de−Ka. s15d

Similarly for hø0, P−s−hd is obtained by interchanging the
role of c− and c+ in the above equation. Simplifying the
above relations one finds that

FIG. 2. Ground state energy of the 1-SAT problem from top to
bottom forp=1/2, p=1/4, andp=1/6.

FIG. 3. Ground state entropy of the 1-SAT problem from top to
bottom forp=1/2, p=1/4, andp=1/6.

FIG. 4. S0 experiences a cavity field determined from the fields
experienced by the other neighbors of function nodes 1,2,3.
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P0 = e−Kas1−c0dI0s2KaÎc−c+d, s16d

and after some straightforward algebra forP+=oh=1
` P+shd

one obtains

P+ + P0 = e−Kac+E
Kac−

`

dt e−tI0s2ÎKac+td. s17d

Equationss16d ands17d are two independent relations which
along with the normalization conditionP−+P0+P+=1 deter-
mine Pshd and Qsud. However we still need to derive the
relations betweenhc0,c−,c+j and hP0,P−,P+j. To this end
note that from Eq.s12d one has

c0 = 1 − fpP+ + s1 − pdP−gK−1
ª 1 − cp,

c− = pcp, c+ = s1 − pdcp. s18d

Summing the above relations one can use Eqs.s16d ands17d
to find the following equation forcp:

cp = fgscpdgK−1, s19d

where

gscpd ª 1 − p − s1 − pdP0 − s1 − 2pdP+. s20d

For p=1/2 werecover the known relation for the effective
field distribution

Pshd = e−KacpIhsKacpd, s21d

where nowcp satisfies

cp = F1 − e−KacPI0sKacpd
2

GK−1

. s22d

Returning to our general problem we find from Eq.s20d that
gs0d=0 and

Udgscpd
dcp

U
cp=0

= 2Kaps1 − pd. s23d

Thus as expected Eq.s19d suggests a continuous transition
for K=2 and discontinuous transitions forKù3. Indeed for
K=2 the critical value ofa is given by

ac =
1

4ps1 − pd
. s24d

Due to the absence of replica symmetry breaking the above
results are exact forK=2. As expected forp=1/2 we get the
known value ofac=1 andac→` for p→0,1.

What can be said aboutac for generalK? Let us focus on
the behavior ofac as p→0. First note that just above the
critical point P+ takes a finite value and from the definition
of cp, Eq. s18d, one obtainscp~pK−1. On the other hand in
gscpd, cp always appears along witha as acp. Expanding
gscpd one finds that only for a finiteacp the two sides of Eq.
s19d would have the same scaling withp. This in turn sug-
gests that the critical value ofa should scale asp−sK−1d.

In Fig. 5 we have solved Eq.s19d numerically forK=3.
Indeed forKù3 the replica symmetric predictions provide
an upper bound forac f16g. For K=3 we found that as ex-
pectedac approaches to infinity likep−2 asp→0.

V. REPLICA APPROACH

In the following we will keep the same lines as Ref.f10g
to calculate the free energy of biased randomK-SAT prob-
lems in the replica formalism. As before we can write energy
or the number of violated clauses as

EfS,Cg = o
l=1

M

dSo
i=1

N

Cl,iSi + KD . s25d

Our goal is to findlnsZfCgd and to this end we need to obtain

Zn ª ZfCgn = o
S1,. . .,Sn

e−boa=1
n EfSa,Cg. s26d

The overline denotes averaging with respect to the random
structure of the factor graph. Due to the independent nature
of clauses one can write

Zn = o
S1,. . .,Sn

zM , s27d

where

FIG. 5. ac versusp for K=3 and in the replica
symmetric approximation. The line shows a
power law of exponent 2.
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z = e−boadsoiCl,iSi
a+Kd. s28d

Then for a single clause we can use the fact that

dSo
i

Cl,iSi + KD = p
j=1

K

dsSi j
a + Cjd, s29d

to write the following expression forz

z =
1

SN

K
D o

C1,. . .,CK=±1
pnfCgs1 − pdK−nfCg o

i1,. . .,iK=1

N

e−boap j=1
K dsSi j

a+Cjd

3s1 + Os1/Nd + ¯ d, s30d

where nfCg is the number of minus elements in the set
hCj u j =1, . . . ,Kj. Let us also define

xssW d ª s1/Ndo
i=1

N

dsSW i − sW d, s31d

wheresW andSW i are vectors ofn Ising elements in the replica
space. Then apart from some irrelevant terms and constants
we obtain

z = o
C1,. . .,CK=±1

pnfCgs1 − pdK−nfCg

3o
sW 1,. . .,sW K

xs− C1sW 1d ¯ xs− CW KsKde−boap j=1
K dss j

a−1d s32d

and thus

Zn , o
xssW d

e−Nf̃sxd, f̃sxd ª − a lnfWsxdg + o
sW

xssW dlnfxssW dg,

s33d

whereaªM /N and

Wsxd ª o
nuK

pns1 − pdK−n o
sW 1,. . .,sW K

p
j=1

n

xssW jd

3 p
j=n+1

K

xs− sW jde−boap j=1
K dss j

a−1d. s34d

In this equationonuK means a sum over all the selections ofn
variables fromK ones and in the same time it orders these
selected variables in the beginning of aK-member list.

Now we should find a form forxssW d which minimizes

f̃sxd. As in previous studiesf10g we use the following ansatz
in the replica symmetric scheme

xssW d =E
−1

1

dmPsmdp
a=1

n S1 + msa

2
D . s35d

Note that forpÞ1/2 we do not have the symmetry relation
xs−sW d=xssW d and soPsmd is not an even function.

Applying the above ansatz we find

Wsxd = o
n=0

K

Bsn,K;pd E p
j=1

K

dmjPsmjdp
a

An,K−nsmd,

s36d

whereBsn ,K ;pd is the binomial distribution

Bsn,K;pd = SK

n
Dpns1 − pdK−n, s37d

and

An,K−nsmd

ª o
s1

a,. . .,sK
a
p
j=1

n S1 + mjs j
a

2
D p

j=n+1

K S1 − mjs j
a

2
De−bp j=1

K dss j
a−1d.

s38d

Doing the sum overs one obtains

An,K−nsmd = 1 + se−b − 1dp
j=1

n S1 + mj

2
D p

j=n+1

K S1 − mj

2
D .

s39d

If we optimize f̃sxd with respect toxssW d we find that

xssW d = LeaW8sxd/Wsxd, s40d

where

W8sxd ª
d

dxssW d
Wsxd, s41d

andL is determined from the normalization condition. After
some calculations one finds the following relation forW8sxd

W8sxd = o
n=0

K

Bsn,K;pd E p
j=1

K

dmjPsmjdFnp
a+

An−1,K−nsmd

+ sK − ndp
a−

An,K−n−1smdG , s42d

where pa±
denotes a product over the indicesa for them

sa= ±1. Moreover in this equation

An−1,K−nsmd = 1 + se−b − 1dp
j=1

n−1 S1 + mj

2
Dp

j=n

K−1 S1 − mj

2
D ,

An,K−n−1smd = 1 + se−b − 1dp
j=1

n S1 + mj

2
D p

j=n+1

K−1 S1 − mj

2
D .

s43d

We are interested to limitn→0 wherexssW d can be written as

xssW d =E dmPsmdeu lnss1+md/s1−mdd. s44d

Now doing the standard algebraf10g we find the following
self consistency relation forPsmd
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Psmd =
2

1 − m2E
−`

`

due−iu lnss1+md/s1−mdde−aK+aW8siud,

s45d

where

W8sud = o
n=0

K−1

Bsn,K;pd E p
j=1

K−1

dmjPsmjdfneu lnsAn−1,K−nsmdd

+ sK − nde−u lnsAn,K−n−1smddg. s46d

Similarly for the free energy we find

bf = − lns2d − as1 − Kdo
n=0

K

Bsn,K;pd

3E p
j=1

K

dmjPsmjdlnsAn,K−nd

− sa/2do
n=0

K

Bsn,K;pd E p
j=1

K−1

dmjPsmjd

3fn lnsAn−1,K−nd + sK − ndlnsAn,K−n−1dg

+ 1
2 E dmPsmdlns1 − m2d. s47d

Equationss47d and s45d return the known relations forp
=1/2 f10g when Psmd is an even function. Finally let us
consider the limitb→` of Eqs. s45d and s47d. To this end
we should work with effective fieldsz given by m
=tanhsbz/2d f9g. Then forb=` we get

Rszd = e−aKE
−`

`

due−iuzeaW8siud. s48d

Now the relation that givesW8sud reads

W8sud = K − KFpE
0

`

dzRszd + s1 − pdE
−`

0

dzRszdGK−1

+ o
n=0

K−1

Bsn,K;pdFnE Dn−1,K−ne
−u mins1,z1,. . .,zn−1,−zn,. . .,−zK−1d

+ sK − nd E Dn,K−n−1e
u mins1,z1,. . .,zn,−zn+1,. . .,−zK−1dG , s49d

where

Dn−1,K−n ª E
0

`

p
j=1

n−1

dzjRszjdE
−`

0

p
j=n

K−1

dzjRszjd,

Dn,K−n−1ª E
0

`

p
j=1

n

dzjRszjdE
−`

0

p
j=n+1

K−1

dzjRszjd. s50d

For the free energy in this limit we have

f = as1 − Kdo
n=0

K

Bsn,K;pd E Dn,K−n mins1,z1, . . . ,zn,

− zn+1, . . . ,−zKd + sa/2do
n=0

K

Bsn,K;pd

3FnE Dn−1,K−n mins1,z1, . . . ,zn−1,− zn, . . . ,−zK−1d

+ sK − nd E Dn,K−n−1 mins1,z1, . . . ,zn,− zn+1, . . . ,−zK−1dG
+ 1

2FE
−`

0

dzRszdz−E
0

`

dzRszdzG . s51d

Considering the simple case ofK=1 the effective field dis-
tribution reads

Rszd = e−a o
m=−`

` SI0sqadImsad + o
n=1

`

s− 1dnI2nsqad

3fI2n−msad + I2n+msadgDdsz− md, s52d

which for p=1/2 returns

Rszd = e−a o
n=−`

`

Insaddsz− nd. s53d

Compare the above relation with Eq.s21d which gives the
effective field distribution in the cavity method and in the
replica symmetric approximation. In fact the two distribu-
tions are the same as they should be as long as we use an
ansatz in which the effective fields take integer values.

VI. SURVEY PROPAGATION EQUATIONS

In this section we study the behavior of 3-SAT problem
by means of numerical solution of survey propagation equa-
tions f14,15g. Let us first write the general form of these
equations. We defineha→i as the probability that in a state
selected randomly from the existing states of the problem,
the clausea sends a warning to variablei to take the value
that satisfies it. This warning is sent if the other members of
a do not satisfy this clause. We denote byVsad the set of
neighbors ofa. Then assuming a tree structure for the factor
graph we have

ha→i = p
jPVsadui

Pa
us jd, s54d

where the product is over all the neighbors ofa excludingi
and Pa

us jd is the probability that variablej does not satisfy
clausea. Let us denote byVa

ss jd the set of clauses that vari-
able j appears in them as it appears in clausea, Fig. 6. The
remaining set of clauses are denoted byVa

us jd. With these
definitionsPa

us jd is given byf15g
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Pa
us jd =

P j→a
u

P j→a
s + P j→a

0 + P j→a
u , s55d

where

P j→a
u = F1 − p

bPVa
us jd

s1 − hb→ jdG p
bPVa

ss jd

s1 − hb→ jd,

P j→a
s = F1 − p

bPVa
ss jd

s1 − hb→ jdG p
bPVa

us jd

s1 − hb→ jd,

P j→a
0 = p

bPVs jdua
s1 − hb→ jd. s56d

Now starting from an arbitrary configuration for the warn-
ings sent along the edges of the factor graph one obtains the
new values ofh’s from Eqs.s54d–s56d and repeat this pro-
cedure until reaches to a stationary state. It is believed that in
the whole region of SAT phase the above equations result in
the correct solutions of randomK-SAT problemsf14g. Here
we apply the same procedure to 3-SAT problem to compute

S, the complexity of our problems. The complexity of a
formula is the logarithm of the number of states and reads
f15g

S = o
a=1

M

Sa − o
i=1

N

szi − 1dSi , s57d

where

Sa = logF p
jPVsad

sP j→a
s + P j→a

0 + P j→a
u d − p

jPVsad
P j→a

u G ,

Si = logfPi
− + Pi

0 + Pi
+g, s58d

and

Pi
− = F1 − p

aPV−sid
s1 − ha→idG p

aPV+sid
s1 − ha→id,

Pi
+ = F1 − p

aPV+sid
s1 − ha→idG p

aPV−sid
s1 − ha→id,

Pi
0 = p

aPVsid
s1 − ha→id. s59d

In these equationsVsid denotes the set ofzi neighbors of
variable nodei, V+sid is the set of function nodes inVsid that
have been connected toi by a full line andV−sid gives the
complementary subset.

It is known thatS is zero in the replica symmetric and
UNSAT phases and nonzero in the hard-SAT phasef15g. In-
creasinga one first encounters the replica symmetry break-
ing point atad whereS takes discontinuously its maximum
valueSm. After this stageS decreases and finally vanishes at
the critical pointac. One can use these properties ofS to
computead andac.

To solve the survey propagation equations we used the
software given inf17g. In Fig. 7 we have shown the results
of this computation forac andad and comparedac with the
predictions of replica symmetric case. As the figure shows
the behavior ofac with p is qualitatively similar to the one
obtained with the replica symmetry assumption. The repre-
sented data have been restricted to relatively large values of

FIG. 6. The survey warningha→i is determined by the set of
surveyshb→ j.

FIG. 7. From top to bottom: the replica sym-
metry predictions forac sRSd, survey propagation
predictions ofac sSPd andad sSPd for K=3 and
N=10 000. The numerical results have been ob-
tained for one realization with the convergence
limit equal to 0.001.
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p. It is due to the fact that for smaller values ofp the com-
plexity vanishes and we are not able to identifyac by look-
ing at S.

In Fig. 8 we also showed the behavior ofSm versusp. It
is seen that aroundp* =0.17 the maximum complexity van-
ishes discontinuously. Then it can be concluded that forp
,p* we have a simple problem as in the regime of easy-SAT
phase.

VII. CONCLUSION

In summery we studied biased randomK-SAT problems
in which a variable is negated with probabilityp. This defi-

nition enables us to go continuously from easy random
K-SAT problems to the hard ones. Certainly this can help us
in a better understanding of the typical complexity of random
K-SAT problems. In this paper we gave the exact solution of
1-SAT case and the full picture of generalK-SAT problems
in the replica symmetry approximation. From these results,
which are exact forK=2, one can obtain an upper bound for
the critical value ofacsp,Kd. We found thatacsp,Kd has a
power law behaviorp−tK for p→0 wheretK=K−1. We stud-
ied 3-SAT problems with the help of numerical solution of
the survey propagation equations and found no replica sym-
metry breaking transition forp,p* ,0.17. However in con-
trast to the tricritical point of 2+p-SAT problem we found
that in both sides ofp* the SAT-UNSAT transition is discon-
tinuous. This phenomenon does not support the current belief
that hardness of a problem may stem from the discontinuous
nature of its transition. Certainly it still demands more stud-
ies to have a clear picture of the origins of typical complexity
in these problems.
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